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The multidrug resistance (M DRI) gene product P-glycoprotein is a membrane protein that functions as
an ATP-dependent efflux pump, transporting exogenous and endogenous substrates from the inside of
cells to the outside. Physiological expression of P-glycoprotein in tissues with excretory or protective
function is a major determinant of drug disposition and provides a cellular defense mechanism against
potentially harmful compounds. Therefore, P-glycoprotein has significant impact on therapeutic efficacy
and toxicity as it plays a key role in absorption of oral medications from the intestinal tract, excretion
into bile and urine, and distribution into protected tissues such as the brain and testes. There is increas-
ing interest in the possible role of genetic variation in MDRI in drug therapy. Numerous genetic
polymorphisms in MDRI have been described, some of which have been shown to determine P-
glycoprotein expression levels and substrate transport. Furthermore, some of these polymorphisms have
an impact on pharmacokinetic and pharmacodynamic profiles of drug substrates and directly influence
outcome and prognosis of certain diseases. This review will focus on the impact of genetic variation in
MDRI on expression and function of P-glycoprotein and the implications of this variation for drug
therapy and disease risk.
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INTRODUCTION

Many transporters relevant for drug therapy are mem-
bers of the superfamily of ABC (ATP-binding cassette) trans-
porters, which comprises eight subfamilies that are encoded
by separate genes on different chromosomes. The multidrug
resistance gene MDRI (ABCBI) and its gene product P-
glycoprotein are the most thoroughly analyzed among ABC
transporters. MDRI is a large gene, spanning more than 100
kb on chromosome 7, with 28 exons that are spliced into a
4.5-kb mRNA. The encoded P-glycoprotein is a highly con-
served member of the ABC transporter family with 12 mem-
brane spanning domains, two nucleotide binding domains,
and a molecular weight of approximately 170 kDa (1-4).

It is now evident that P-glycoprotein plays a major role in
drug disposition and in protecting the organism against many
of the toxic xenobiotics to which it can potentially be exposed
in nature. P-glycoprotein confers protection by limiting the
uptake of compounds from the gastrointestinal tract and by
contributing to their excretion via the liver, kidneys, and in-
testine. Moreover, P-glycoprotein in the blood-brain barrier
and other blood-tissue barriers protects sensitive organs from
exposure to toxic compounds that may have entered the
bloodstream. (5-8). Substrate specificity of P-glycoprotein is

! Division of Clinical Pharmacology, Department of Internal Medi-
cine, University Hospital Zurich, Zurich, Switzerland.

2 Department of Biopharmaceutical Sciences, School of Pharmacy,
University of California San Francisco, San Francisco, California,
USA.

3 To whom correspondence should be addressed. (e-mail: christiane.
pauli@usz.ch)

extremely broad, and consequently, P-glycoprotein is a major
determinant of drug disposition. Recently, genetic variation
in MDRI has been identified as a determinant of P-
glycoprotein expression and function in normal tissue,
thereby contributing to interindividual differences in drug re-
sponse. This review summarizes currently available data on
MDRI genetic polymorphisms and their functional conse-
quences and impact on drug treatment and disease course.

TISSUE DISTRIBUTION AND SUBSTRATE
SPECIFICITY OF P-GLYCOPROTEIN

The relevance of P-glycoprotein for pharmacological
therapy was first recognized in cancer treatment, where it was
identified to be one of the main players associated with mul-
tidrug resistance. Overexpression of this protein in tumor
cells has been shown to decrease intracellular accumulation of
chemotherapeutic agents in vitro, thereby allowing cancer
cells to escape the otherwise cytotoxic effects of these drugs
(9). Available evidence suggests that P-glycoprotein also
causes drug resistance in clinical tumors, and P-glycoprotein
overexpression in cancer has been associated with poor prog-
nosis in affected patients (10-12).

More recently, physiological expression of P-glyco-
protein was found in epithelial cells of different tissues with
excretory or protective function, including the brush border
membrane of enterocytes in the small intestine, the canalic-
ular membrane of hepatocytes, capillary endothelial cells of
brain and testis, and the brush border membrane of proximal
tubule cells in kidneys (13,14). Furthermore, P-glycoprotein
can be detected in hematopoetic cells and in pancreatic, adre-
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Table I. MDRI Coding Variants

Allele frequency”

cDNA NT DNA/AA AA Total CA AA AS ME PA
position” change position change (n = 494) (n = 200) (n = 200) (n = 60) (n = 20) (n = 14)
61 AtoG 21 Asn to Asp 0.045 0.080 0.025 0.017 0 0
266 Tto C 89 Met to Thr 0.002 0.005 0 0 0 0
729 AtoG 243 Syn 0.002 0.005 0 0 0 0
781 AtoG 261 Ile to Val 0.006 0 0.015 0 0 0
1199 Gto A 400 Ser to Asn 0.014 0.025 0.010 0 0 0
1236 CtoT 412 Syn 0.385 0.459 0.209 0.685 0.450 0.571
1308 AtoG 436 Syn 0.002 0 0.005 0 0 0
1617 CtoT 539 Syn 0.002 0.005 0 0 0 0
1985 Tto G 662 Leu to Arg 0.002 0.005 0 0 0 0
2005 CtoT 669 Arg to Cys 0.004 0 0.010 0 0 0
2547 AtoG 849 Ile to Met 0.002 0.005 0 0 0 0
2650 CtoT 884 Syn 0.004 0.005 0.005 0 0 0
2677 GtoT 893 Ala to Ser 0.308 0.464 0.100 0.450 0.400 0.357
2677 Gto A 893 Ala to Thr 0.035 0.036 0.005 0.067 0 0.357
3151 Cto G 1051 Pro to Ala 0.002 0 0.005 0 0 0
3322 TtoC 1108 Trp to Arg 0.002 0 0.005 0 0 0
3421 Tto A 1141 Ser to Thr 0.047 0 0.111 0 0.050 0
3435 CtoT 1145 Syn 0.392 0.561 0.202 0.400 0.500 0.500
3751 Gto A 1251 Val to Ile 0.002 0 0 0 0.050 0
3767 Cto A 1256 Thr to Lys 0.002 0.005 0 0 0 0

“cDNA numbers are relative to the ATG site and based on the cDNA sequence from GenBank accession number M14758.
b Allele frequencies were calculated for the total population and each individual ethnic group; CA, Caucasian, AA, African American, AS, Asian American, ME, Mexican American, PA, Pacific
Islander. n is the number of chromosomes in each ethnic group.
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nal, and placental tissue. Its major function is to confer pro-
tection by limiting intracellular accumulation of xenobiotics
and by controlling tissue exposure to potentially toxic com-
pounds. Substrates of P-glycoprotein show substantial over-
lap with cytochrome P450 3A4 substrates and include numer-
ous drugs used for treatment of common diseases, such as
cardiovascular disease, HIV infection, and malignant tumors
(15,16). Consequently, P-glycoprotein is a major determinant
of in vivo drug disposition and response and is involved in
numerous drug interactions. Drug interactions involving P-
glycoprotein are especially relevant for drugs with narrow
therapeutic indices, where induction or inhibition of trans-
porter function can have a tremendous impact on drug effi-
cacy and safety (5,17,18).

GENETIC VARIATION IN MDR1

There is increasing evidence that genetic variation in
MDRI affects P-glycoprotein function and expression levels.
The first genetic polymorphism of MDRI to be identified was
a G2677T variant isolated from human adrenal, liver, and
kidney samples that results in an Ala893Ser change in P-
glycoprotein (19,20). More recently, Hoffmeyer et al. se-
quenced M DRI exons and flanking intron-exon boundaries in
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a collection of 188 healthy Caucasian volunteers and identi-
fied a total of 15 variant sites. Additional variants have been
identified by resequencing MDRI in larger sample sets and
different ethnic populations (21-28). Table I gives a summary
of 19 segregating sites, resulting in 20 coding region variants
identified in a population of 247 healthy individuals of differ-
ent ethnic backgrounds (22). Thirteen of these coding region
variants resulted in an amino acid change, and six were silent
mutations. With only two exceptions, these coding region
variants were located in the intracellular loops of the protein
(Fig. 1). It can be expected that additional variants will be
detected, although the extensive sampling in the latest study
insured identification of all common MDRI variants.

As shown in Table I, allele frequencies of MDRI variants
varied widely between different populations. The power to
detect variants was highest in Caucasians and African Ameri-
cans as sample size was considerably larger in these popula-
tions compared to other ethnic groups. There is also increas-
ing data on variant segregation in Asians, whereas data on
individuals with other ethnic backgrounds are still limited
(22,24,28). Of particular interest is the large discrepancy in
allele frequency of the common C1236T, G2677T, and
C3435T variants between Caucasians and African Americans
(21,22). These three variants are all found at 45-55% fre-
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Fig. 1. Secondary structure of P-glycoprotein with coding region SNPs. The transmembrane topology schematic was rendered using TOPO
(S. J. Johns and R. C. Speth, transmembrane protein display software, http:/www.sacs.ucsf.edu/TOPO/topo.html, unpublished). Non-
synonymous amino acid changes are shown in red and synonymous changes are shown in blue. The position of amino acid changes in
P-glycoprotein resulting from non-synonymous changes in ABCBI are indicated. The Walker A, Walker B, and linker peptide domains
comprising the nucleotide binding domains are marked in orange, purple, and green, respectively.
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quency in Caucasians but only at 5-10% frequency in the
African-American population. In general, the distribution of
common MDRI variants in Asians, Mexican Americans, and
Pacific Islanders shows a similar pattern as in Caucasians (22).
Consistent with the age of the African-American population,
more distinct and rare variants were detected in this popula-
tion relative to the other ethnic groups sampled.

HAPLOTYPE STRUCTURE OF MDRI

The most complete approach to assigning haplotypes was
based on MDRI variant identification in 245 DNA samples
from individuals of different ethnic origin (22). Bayesian
methods were used to statistically infer haplotypes (29,30).
Sixty-four haplotypes were inferred, of which 33 were found
in 3 or more chromosomes. These 33 common haplotypes
represent 20 segregating sites, including 10 intronic, 3 un-
translated region, 5 non-synonymous, and 2 synonymous vari-
ants. Chromosomes from 98% of Caucasians, 84% of African
Americans, 97% of Asian Americans, 100% of Mexican
Americans, and 92% of Pacific Islanders were assigned a
common haplotype. Haplotype analysis of MDRI revealed
two major haplotypes, which differed at six segregating sites
(22). MDRI*13 contains three coding variants (C1236T,
G2677T, and C3435T) and three intronic variants [intron 13
C(+24)T, intron 9 A(—44)G, and intron 14 A(+38)G] relative
to the MDRI*1 reference haplotype. Figure 2 shows the eth-
nic distribution of MDRI*1 and MDRI%*13, which cover 36%
of the 490 chromosomes analyzed in this study. The reference
haplotype MDRI*1 is the most prevalent in the African-
American population, whereas MDRI%13 is found at about a
2-fold higher frequency in the Caucasian population than the
reference haplotype. There was also great interethnic vari-
ability in the total number of haplotypes observed in a popu-
lation and the ethnic distribution of other haplotypes (22).

MDRI haplotype structure has also been analyzed in
three different Asian populations (28). Haplotypes consid-
ered only the three high frequency coding variants, C1236T,
G2677T/A, and C3435T. A total of 10 haplotypes were found
in this analysis, 3 of which were not identified in other studies
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Fig. 2. Ethnic distribution of MDRI*1 and MDRI*13. The ethnic
distribution of the two major MDRI haplotypes are shown. Haplo-
types were called for 100 Caucasians (black bars), 99 African Ameri-
cans (diagonal lines), 60 Asian Americans (gray), 10 Mexican Ameri-
cans (hatch marks), and 6 Pacific Islanders (white bars). Data from
Kroetz et al. (27).
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(21,22). In agreement with the analysis by Kroetz and co-
workers, the 1236T/2677T/3435T haplotype was the most
common haplotype in Chinese, Indian, and Malay popula-
tions (31-49% frequency). The corresponding haplotype with
reference nucleotides at these three positions (1236C/2677G/
3435T) was also detected at similar frequencies in these three
Asian populations (18-28%). Interestingly, a 1236T/2677G/
3435C haplotype was found at 23-35% frequency in Chinese
and Malay populations but only at 1.7% frequency in an In-
dian population.

IMPACT OF MDR1 GENETIC VARIATION ON
P-GLYCOPROTEIN EXPRESSION AND FUNCTION
IN VITRO

The earliest data on the functional impact of genetic
variation in the MDRI gene were derived from in vitro ex-
periments in cancer cells grown under selective pressure
(Table II). Kioka et al. compared the sequence of full-length
MDR1 cDNA isolated from human adrenal gland with
MDRI1 cDNA obtained from colchicine-selected multidrug-
resistant cultured cells (19). The colchicine-selected cells ex-
hibited a Gly185Val substitution in P-glycoprotein, resulting
in increased resistance to colchicine but no apparent effect on
sensitivity to adriamycin and vinblastine. In this case, a single
nucleotide polymorphism in MDRI resulted in a change in
the pattern of P-glycoprotein substrate specificity. A P-
glycoprotein variant with a deletion of a phenylalanine at
amino acid residue 335 has also been identified in a multi-
drug-resistant human sarcoma cell line isolated by coselection
with doxorubicin and the cyclosporine analog PSC-833 (val-
spodar) (31). Cells expressing the APhe335 variant exhibited
an altered phenotype compared to the reference protein, with
decreased resistance to vinca alkaloids, loss of resistance to
dactinomycin, and decreased transport of rhodamine 123 and
cyclosporin A. However, these functional effects were sub-
strate-dependent, as resistance to doxorubicine and paclitaxel
was retained. These results indicate that Phe335 is an impor-
tant binding site for P-glycoprotein substrates and inhibitors.

Numerous site-directed mutagenesis studies have shown
that the introduction of nucleotide changes in highly con-
served regions of MDRI has a major impact on P-glyco-
protein function and expression (32). The cystic fibrosis trans-
membrane conductance regulator gene (CFTR), another
member of the ABC family of transporters, shares conserved
sequence motifs with MDRI and other ABC genes in the
regions coding for nucleotide binding sites. Naturally occur-
ring CFTR mutations introduced at analogous positions in the
human MDR1 cDNA resulted in defective processing of
mRNA and a nonfunctional P-glycoprotein, whereas a func-
tional multidrug transporter was obtained when the amino
acid substitution was introduced in less conserved regions of
the gene (33).

The first functional data on naturally occurring genetic
variation in MDRI considered the effect of these polymor-
phisms on allelic expression. Two single nucleotide polymor-
phisms, G2677T and G2995A, were identified that resulted in
Ala893Ser and Met999Val changes in P-glycoprotein, respec-
tively. In normal cells and unselected cell lines, the frequency
of expression of both alleles was similar, whereas in drug-
selected cell lines and in samples of relapsed malignant lym-
phoma, expression was shifted toward overrepresentation of
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Table II. Functional Impact in vitro of MDRI Variants

Amino acid change Functional effect of the variant allele Reference
Vall85Ser Increased colchicine resistance [30]
APhe335 Decreased resistance to vinca alkaloids; no resistance to dactinomycin [31]
Lys536Gln, Gly534Asp, Lys536Arg, Defective RNA processing [33]

Ser532Arg, ATyr490
Ala893Ser Acquired overexpression of one allele in drug-resistant cells [20]
Ala893Ser Decreased digoxin efflux [19]
Asn21Asp, Phel03Leu, Ser400Ala, No effect on P-glycoprotein cell surface expression and substrate specificity [69]
Ala893Ser, Ala893Thr
Ala893Ser No difference in calcein-AM transport [27]
Ala893Ser/Thr No difference in transport of verapamil, digoxin, viblastine and cyclosporine A [35]

one allele. Although in this study the functional impact of the
amino acid changes was not directly investigated, the devia-
tion in the drug-exposed cells and relapsed tumor cells from
the segregation pattern observed in normal or drug-naive tu-
mor cells was interpreted as acquired change, which might
offer a selection advantage to the tumor cells (20).

At least five P-glycoprotein variants have been function-
ally characterized in heterologous expression systems. A vac-
cinia virus expression system was used to examine the
Asn21Asp, PhelO3Leu, Ser400Ala, Ala893Ser, and
Ala893Thr P-glycoprotein variants. In all cases, the cell sur-
face distribution and substrate specificity of these variant
transporters were similar to reference P-glycoprotein, sug-
gesting no functional impact of these variations (34). How-
ever, most substrates used in this study were labeled with
bulky fluorescent bodipy groups, which might affect the sub-
strate specificity for P-glycoprotein. Both transient and stable
expression of the common Ala893Ser variant has failed to
identify significant differences in the transport of calcein-AM,
verapamil, digoxin, vinblastine, or cyclosporin A relative to
the reference protein (22,35). In both of these cases, the non-
synonymous G2677T variant was studied in the context of the
C1236T and C3435T variants found in the common MDRI
haplotypes. In contrast, digoxin efflux in mammalian cells
retrovirally transduced with MDR1 cDNAs encoding either
the Ser893 or the reference Ala893 P-glycoprotein showed
significantly decreased intracellular digoxin concentration for
the Ser893 variant, suggesting increased P-glycoprotein func-
tion (21). The lack of concordance among these functional
studies might reflect differences in the heterologous expres-
sion systems, P-glycoprotein substrates, and functional assays
that were used in the various studies. Clearly, additional stud-
ies examining the kinetics of transport by these P-glyco-
protein variants are necessary before a consensus can be
reached about the functional effects of these MDRI variants.
The establishment and validation of a standard experimental
system will be essential for meaningful interstudy compari-
sons of the consequences of different MDR1 variants on P-
glycoprotein function and expression.

IMPACT OF MDR1 GENETIC POLYMORPHISM ON
TISSUE EXPRESSION AND FUNCTION
OF P-GLYCOPROTEIN

Only a limited number of studies have investigated the
association between M DRI genetic variation and tissue levels
of P-glycoprotein (Table III). The levels of intestinal P-
glycoprotein were reported to be lower in healthy Caucasian

volunteers homozygous for the synonymous C3435T variant
relative to those with the reference genotype (25). It must be
noted, however, that the molecular mechanism by which this
synonymous (C3435T) variant influences P-glycoprotein ex-
pression is unclear. Analysis of placental P-glycoprotein ex-
pression in Japanese women indicated that individuals with
the —129TC genotype had lower levels relative to those with
the —129TT genotype; however, there was no significant as-
sociation between 2677 and 3435 genotype and P-glyco-
protein levels (24). The effect of this 5'-untranslated region
variant (T-129C) on expression is consistent with the known
effects of untranslated regions on protein expression.

In CD56-positive natural killer cells, individuals with the
3435TT genotype had lower levels of MDR1 mRNA and de-
creased rhodamine 123 efflux compared to those with the
reference genotype (36). However, such an association could
not be confirmed in a subsequent study, which failed to show
an association between the G2677T and C3435T polymor-
phisms with rhodamine efflux in peripheral blood lympho-
cytes (37).

IMPACT OF MDR1 GENETIC POLYMORPHISM ON
DRUG DISPOSITION

Digoxin is the most extensively studied P-glycoprotein
substrate with respect to the effect of MDRI genetic variation
on intestinal bioavailability (Table IIT). Consistent with the
decreased levels of intestinal P-glycoprotein, plasma levels of
digoxin were significantly higher in individuals with the
3435TT genotype relative to the 3435CC individuals (25).
Steady-state digoxin AUC values were also reported to be
higher (38) and digoxin renal clearance was lower (39) in
volunteers with the 3435T allele. However, decreased intes-
tinal absorption of digoxin (40,41) and lack of effect (17,42)
have also been reported for the 3435TT genotype. Possible
explanations for these discordant results include heterogene-
ity in the MDRI haplotype structure within the study popu-
lations and the relatively small sample sizes used for these
studies.

Similar controversy also exists regarding the influence
of the MDRI genotype on the disposition of other
P-glycoprotein substrates. In healthy Caucasian and African-
American volunteers, individuals with the 2677GG/3435CC
genotypes had higher fexofenadine AUC values than indi-
viduals homozygous for the variant alleles in these two posi-
tions (2677TT and 3435TT), consistent with increased P-
glycoprotein function in individuals with the variant geno-
types (21). A similar finding was made when the 2677 and
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Table III. Impact of MDRI Genetic Variation on P-Glycoprotein Expression and Drug Pharmacokinetics
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Population Nucleotide/amino acid change Substrate Functional effect of the variant allele  Reference

Caucasian volunteers C3435T Digoxin Decreased intestinal P-glycoprotein [23]
expression; increased digoxin AUC
after single dose

Japanese volunteers C3435T Digoxin Decreased digoxin AUC after single [40]
dose

Caucasian volunteers C3435T Digoxin Higher digoxin AUC under steady [38]
state conditions

Japanese volunteers G2677T (Ala 893Ser) + C3435T Digoxin Higher digoxin AUC and digoxin [39]
renal clearance after single dose

Caucasian volunteers C3435T Digoxin No change in single dose digoxin [42]
pharmacokinetics

Caucasian volunteers C3435T Rhodamine 123  Decreased rhodamine 123 efflux from [36]
CD56 positive cells

Healthy bone marrow C3435T, G2677T (Ala893Ser), T-129C Rhodamine 123  No difference in rhodamine 123 efflux [70]

donors from hematopoietic stem cells

Caucasian volunteers G2677T (Ala893Ser), C3435T Rhodamine 123  No difference in rhodamine 123 efflux [37]
from CD 56 positive cells

Caucasian and African G2677T (Ala893Ser) + Fexofenadine Decreased fexofenadine AUC after [19]
single dose

American volunteers C3435T

Caucasian volunteers C3435T Fexofenadine No change in fexofenadine [43]
pharmacokinetics

Caucasian volunteers G2677T (Ala893Ser), C3435T Talinolol No change in single dose talinolol [51]
pharmacokinetics

Caucasian volunteers C3435T Nelfinavir Decreased nelfinavir serum levels [50]

Renal transplant patients  C3435T Tacrolimus Higher tacrolimus blood levels [46]

Renal transplant patients C3435T Cyclosporine A Higher cyclosporine A clearance [45]

Renal transplant patients  C3435T Cyclosporine A No difference in transplant survival or [48]
cyclosporine through levels

Renal transplant patients  C3435T Cyclosporine A, No difference in cyclosporine and [49]

tacrolimus tacrolimus dose requirement
Renal transplant patients T-129C, C1236T, G2677T/A Tacrolimus Higher tacrolimus dose requirement [44]
(Ala893Ser/Thr), C3435T in carriers of the 2677T/A alleles
Pediatric heart transplant G2677T/A (Ala893Ser/Thr), C3435T Tacrolimus Higher tacrolimus blood levels at 6 [47]
patients and 12 months

Japanese women T-129C — Increased placental P-glycoprotein [22]
expression levels

Caucasian volunteers C1236T + G2677T/A (Ala893Ser/Thr) Loperamide No difference in single dose [57]

+ C3435T

pharmacokinetics

3435 polymorphisms were analyzed separately, with AUC
values being highest for individuals carrying the reference
alleles. However, in a separate study, the MDRI1 C3435T vari-
ant had no effect on fexofenadine disposition (43).

The contribution of MDRI genetic polymorphisms has
also been extensively studied for the calcineurin inhibitors
cyclosporine and tacrolimus, which show large interindividual
differences in oral bioavailability. Though two studies in renal
transplant patients found cyclosporine and tacrolimus dose
requirement to be higher in individuals homozygous for the
3435T allele (44,45), two other studies investigating tacroli-
mus steady-state dose requirement found an opposite effect,
with plasma levels being lower in the 3435CC group after 3, 6,
and 12 months (46,47). A recent study investigating the effect
of genetic polymorphisms in CYP3A4, CYP3A5, and MDRI
on the pharmacokinetics of cyclosporine and tacrolimus also
found no evidence supporting a role for the MDRI C3435T
polymorphism in dose requirement of the two drugs, consis-
tent with previous reports regarding cyclosporin A trough
levels and MDR1 genotype (48,49).

The effects of the MDR1 C3435T variant on plasma drug

levels has also been studied for nelfinavir and talinolol (Table
III). Nelfinavir trough levels (expressed in percentiles) is low-
est in individuals with the 3435TT genotype (50), whereas
talinolol pharmacokinetics were unaffected by MDRI 3435
genotype (51). The discordant results with various substrates
supports additional studies to understand the role of MDRI
variation in the disposition of P-glycoprotein substrates.

IMPACT OF MDR1 GENETIC VARIATION ON
EXPRESSION AND FUNCTION OF
P-GLYCOPROTEIN IN THE

BLOOD-BRAIN BARRIER

Most of the aforementioned studies characterized the im-
pact of MDRI genetic polymorphism on intestinal P-glyco-
protein expression, which is one of the determinants of drug
absorption and has a major impact on pharmacokinetic pro-
files. A second major site of P-glycoprotein expression and
function are the capillary endothelial cells of the blood-brain
barrier. Impairment of P-glycoprotein function in the blood-
brain barrier was associated with severe neurotoxic side ef-
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fects of drugs that can otherwise not cross this border
(8,52,53). The 3435T allele was recently shown to be a risk
factor for occurrence of nortriptyline-induced postural hypo-
tension, which might be due to increased cerebral concentra-
tions of nortriptyline in these patients (54) (Table IV). Fur-
thermore, increased tacrolimus neurotoxicity in liver trans-
plant patients was associated with the G2677T variant (55),
which is in tight linkage disequilibrium with the C3435T vari-
ant. Surprisingly, despite this significant linkage disequilib-
rium, MDRI G2677T is a positive predictor whereas C3435T
is a negative predictor for the development of tacrolimus neu-
rotoxicity.

A recent study investigated the impact of the C3435T
polymorphisms on disposition and brain entry of the P-
glycoprotein substrate loperamide, as an indirect measure of
P-glycoprotein function in the blood-brain barrier (Table IV).
Brain entry was studied by measuring respiratory depression
in response to an increased level of CO,, as previously estab-
lished in P-glycoprotein chemical inhibition studies (56). No
significant differences in loperamide plasma levels or the ex-
tent of respiratory depression could be found between the
3435CC and 3435TT genotypes (57). These data indicate that
the MDRI C3435T polymorphism is not a determinant of
disposition and brain exposure of loperamide. In the same
study, a post hoc analysis considering the two major MDRI
haplotypes, MDRI*1 and MDRI*13, could not detect haplo-
type-related differences in loperamide pharmacokinetics or
respiratory response (57). This is not surprising, as it was the
primary goal of this study to investigate the impact of the
C3435T polymorphism on loperamide respiratory response,
and therefore the statistical power was not calculated to de-
tect haplotype-related effects. However, the study nicely il-
lustrates the diversity of MDR1 haplotypes found in a sample
selected for a common MDRI polymorphism. Haplotypes
were assignable for 13 out of 16 individuals participating in
the study, and these 13 individuals carried 9 different haplo-
types. These observations further underscore the notion that
populations selected based on a particular MDR1 polymor-
phism might still be very heterogeneous, which is a likely
explanation for the discrepant finding in different in vivo
studies.

IMPACT OF MDR1 GENETIC VARIATION ON
DISEASE COURSE

A recent focus has been on the association of MDRI
genetic variation with disease (Table V). Several conditions
have been investigated where an impaired cellular barrier
function at the level of the small intestine or the blood-brain
barrier is likely to contribute to disease pathogenesis. Al-
though there were no statistically significant associations be-
tween the MDRI T-129C, G2677T, and C3435T variants and
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Parkinson’s disease, there was a trend toward higher fre-
quency of the 3435TT genotype in early onset Parkinson’s
disease patients (36.0%) compared to late onset patients
(22.9%) and controls (18.9%) (58). It has been hypothesized
that the 3435TT patients have lower P-glycoprotein expres-
sion and/or an impaired blood-brain barrier function and
therefore are more susceptible to neurotoxic xenobiotics.
This hypothesis is supported by the finding of a 5-fold in-
creased risk to develop Parkinson’s syndrome after exposure
to pesticides in patients harboring the 3435T allele (59). Fur-
thermore, patients with drug-resistant epilepsy were more
likely to have the 3435CC genotype than the 3435TT geno-
type, pointing toward a more efficient barrier function in the
capillary endothelial cells and around the epileptogenic focus
in drug-resistant patients (60). At the intestinal and renal
level, patients with ulcerative colitis and non—clear cell renal
carcinoma had significantly increased frequencies of the
3435T allele, which again supports a role for P-glycoprotein in
maintaining effective tissue barriers and protecting the body
from potential environmental and metabolic toxins (61,62).

A possible role of MDRI genetic polymorphisms in re-
sponse to anticancer treatment has also been investigated. In
patients with acute myeloid leukemia (AML), homozygosity
for the T allele in position 2677 was associated with signifi-
cantly shorter relapse times and worse survival rates com-
pared to heterozygosity in this position (63). In contrast, an
independent study reported lower MDR1 expression, signifi-
cantly decreased overall AML-survival, and a high probabil-
ity of relapse in patients with the MDRI 3435CC genotype
compared to those with the 3435TT genotype (64). Consistent
with this study, the 3435C genotype was also associated with
resistance to preoperative chemotherapy in locally advanced
breast cancer (65)

The importance of P-glycoprotein in the disposition of
drugs used in antiretroviral therapy has led to investigation of
MDRI genetic variation in HIV populations. Though the
T-129C, G2677T/A, and C3453T polymorphisms do not influ-
ence the risk of HIV infection per se (66), the C3435T poly-
morphism was found to predict immune recovery after initia-
tion of antiretroviral treatment. Maximal immune recovery
was observed in patients with the MDRI 3435TT genotype,
which might reflect enhanced penetration of antiretroviral
drugs in these cell populations due to lower cell surface P-
glycoprotein expression (50). This is in line with a recent
publication describing a trend to earlier virological failure in
the MDRI 3435CC genotype (67). However, MDRI geno-
type-related differences were not observed in response to
antiretroviral therapy in drug-naive HIV-positive patients
(68). Though the results of many of these studies in specific
disease populations are intriguing, additional studies in large
populations with consideration of MDRI haplotypes will be
necessary before conclusions can be made about the signifi-

Table IV. Impact of MDRI Genetic Variation on Function of P-Glycoprotein in the Blood Brain Barrier

Population Nucleotide/amino acid change Functional effect of the variant allele Reference
Patients with major depresssion C3435T Increased risk for the development of postural hypotension [54]
Liver transplant patients G2677T (Ala893Ser), C3435T Increased tacrolimus neurotoxicity in 2677T carriers; [55]
decreased tacrolimus neurotoxicity in 3435T carriers
Caucasian volunteers C1236T + G2677T/A No difference in CNS effects of loperamide [57]

(Ala893Ser/Thr) + C3435T
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Table V. Impact of MDRI Genetic Variation on Disease Development and Drug Response

Population Nucleotide/amino acid change Functional effect of the variant allele Reference
Ulcerative colitis C3435T Increased susceptibility for ulcerative colitis [61]
Renal epithelial cell cancer C3435T Increased susceptibility for renal epithelial tumor [62]

and healthy controls

Parkinson’s disease C3435T Trend towards higher frequency of 3435T genotype [58]
in early onset Parkinson’s disease

Parkinson’s disease C3435T Increased susceptibility for pesticide induced [59]
Parkinson’s syndrome

Drug resistant epilepsy C3435T Lower incidence of drug resistant epilepsy [60]

AML G2677T Shorter relapse time, lower survival rates after [63]
chemotherapy for homozygous carriers of the G
or the T in this position

AML C1236T + G2677T Higher overall survival and longer relapse time [64]

(Ala893Ser) + C3435T

Breast cancer C3435T Decreased resistance to preoperative chemotherapy [65]

HIV C3435T Decreased nelfinavir plasma levels, increased CD4 recovery [50]

HIV C3435T Trend to later virological failure [67]

HIV C3435T No difference in antiretroviral treatment response [68]

cance of MDRI genetic variation on disease development,
progression, and response to drug therapy.

SUMMARY

Given its impact on pharmacokinetic and pharmacody-
namic effects of drugs, great effort has been applied to iden-
tify genetic variation in the MDRI gene that might explain
interindividual differences in P-glycoprotein expression and
function. MDRI genetic polymorphisms have been identified
in large populations of individuals with different ethnic back-
grounds, with sufficient power to detect even relatively un-
common variants. Some of these variants were shown to have
an impact on P-glycoprotein expression and function in can-
cer cells and normal tissue, but for most of these variants, the
in vivo functional impact remains to be established. To date,
the G2677T non-synonymous variant and the synonymous
C3435T variant have been associated with a clinical pheno-
type, but the results of these studies remain controversial.
Linkage disequilibrium of the C3435T polymorphism with
other coding region variants has underscored the importance
of understanding haplotypes to describe function. Recently,
extensive haplotype analysis allowed the identification of
common haplotypes, which makes it possible to use a haplo-
type approach for future functional studies. The functional
characterization of genetic variation in the MDRI gene will
provide a very powerful tool to optimize drug therapy for
substrates with a narrow therapeutic range, such as cardio-
vascular or anticancer drugs. It might also be useful to predict
therapeutic outcome in certain types of cancer or HIV infec-
tion. It is, however, clear that we are in an early stage of
defining the pharmacological impact of pharmacogenomic re-
search and that a broader genomic approach will be required
to elucidate the impact of genetic variation for most medica-
tions. From this perspective, characterization of the func-
tional impact of MDRI genetic polymorphisms will add to a
network of genes that are involved in drug metabolism, trans-
port, and response, which will make it ultimately possible to
more accurately optimize drug response and safety in indi-
vidual patients.
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